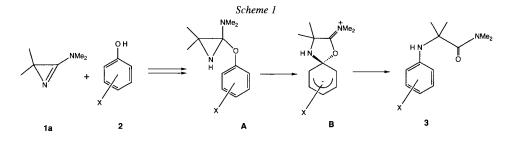
99. Reaction of 3-Amino-2*H*-azirines with 2-Amino-4,6-dinitrophenol (Picramic Acid): Synthesis of Quinazoline- and 1,3-Benzoxazole Derivatives¹)

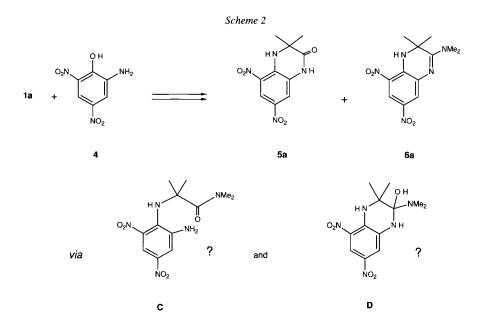
by José M. Villalgordo²), Beverly R. Vincent³), and Heinz Heimgartner*

Organisch-chemisches Institut der Universität Zürich Winterthurerstrasse 190, 8057-Zürich

(17.IV.90)

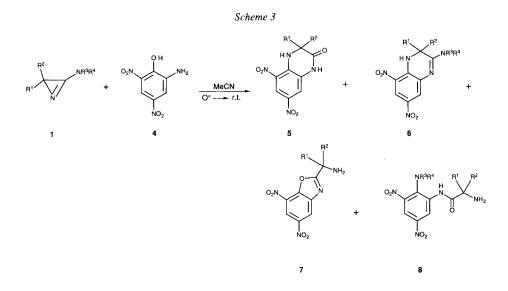

The reaction of 3-(dimethylamino)-2*H*-azirines **1a**-c and 2-amino-4,6-dinitrophenol (picramic acid, **2**) in MeCN at 0° to room temperature leads to a mixture of the corresponding 1,2,3,4-tetrahydroquinazoline-2-one **5**, 3-(dimethylamino)-1,2-dihydroquinazoline **6**, 2-(1-aminoalkyl)-1,3-benzoxazole **7**, and *N*-[2-(dimethylamino)phenyl]- α -aminocarboxamide **8** (*Scheme 3*). Under the same conditions, 3-(*N*-methyl-*N*-phenyl-amino)-2*H*-azirines **1d** and **1e** react with **2** to give exclusively the 1,3-benzoxazole derivative **7**. The structure of the products has been established by X-ray crystallography. Two different reaction mechanisms for the formation of **7** are discussed in *Scheme 6*. Treatment of **7** with phenyl isocyanate, **4**-nitrobenzoyl chloride, tosyl chloride, and HCl leads to a derivatization of the NH₂-group of **7** (*Scheme 4*). With NaOH or NaOMe as well as with morpholine, **7** is transformed into quinazoline derivatives **5**, **14**, and **15**, respectively, *via* ring expansion (*Scheme 5*). In case of the reaction with morpholine, a second product **16**, corresponding to structure **8**, is isolated. With these results, the reaction of **1** and **2** is interpreted as the primary formation of **7**, which, under the reaction conditions, reacts with Me₂NH to yield the secondary products **5**, **6**, and **8** (*Scheme 7*).

1. Introduction. – Several years ago, we have reported that phenols with $pK_a < ca. 8$ and 3-(dimethylamino)-2,2-dimethyl-2*H*-azirine (1a) in benzene at reflux temperature react to give substituted anilines of type 3 [1] (*Scheme 1*). The mechanism of this reaction was formulated in analogy to that of the reaction of 1a and carboxylic acids (*cf.* [2][3]): protonation of the ring-N-atom of 1a by the acidic phenol and nucleophilic attack of the phenolate at the amidinium-C-atom leads to the aziridine A which rearranges to give the spiro-*Meisenheimer* compound B. Re-aromatization *via* cleavage of the C–O bond and formation of the amide group than yields 3; *i.e.* the transformation $2 \rightarrow 3$ proceeds *via* a nucleophilic aromatic substitution.


¹) Presented (*H.H.*) at the 'Internationales Symposium über Stickstoff-Ringe und -Ketten', Heidelberg, March 19–21, 1990.

²) Part of the planned thesis of J.M.V., Universität Zürich.

³) Present address: Molecular Structure Corp., 3200A Research Forest Drive, The Woodlands, Texas 77381, USA.


Under similar conditions (MeCN, reflux), the reaction of 2-amino-4,6-dinitrophenol (picramic acid, $pK_a = 4,2^4$), 4) and 1a gave a mixture of the quinazoline derivatives 5a and 6a in *ca.* 10 and 25% yield, respectively (*Scheme 2*). We have proposed [4] a reaction mechanism similar to that of other activated phenols, *i.e.* the α -(arylamino)isobutyramide C should be an intermediate. Intramolecular nucleophilic attack of the aromatic NH₂ group onto the *N*,*N*-dimethylamide function could give D which, after elimination of either Me₂NH or H₂O, yields the isolated products 5a and 6a.

Recently, we tried to establish the proposed reaction mechanism by proceeding the reaction at lower temperature and with differently substituted 3-amino-2H-azirines 1 in order to isolate the postulated intermediate C.

⁴) Determined by potentiometric titration.

2. Results. – A solution of 3-(dimethylamino)-2,2-dimethyl-2*H*-azirine (1a) in MeCN was added to a suspension of picramic acid (2) in MeCN at 0° and stirred at room temperature. After 24 h, a complex mixture of products was detected by TLC. Separation by flash chromatography yielded 5a and 6a as yellow and red crystals, respectively, in small amounts (*Scheme 3* and *Tab. 1*).

After crystallization, the main product 7a, which is an isomer of 5a, was isolated in *ca*. 45% yield as an orange powder. The remaining product 8a, isolated in *ca*. 26% yield as yellow prisms, has been proved to be the only 1:1 adduct of 1a and 2 (MS, elemental analysis) formed in this reaction.

1	\mathbb{R}^1	R ²	R ³	R⁴	5 [%]	6 [%]	7 [%]	8 [%]
a	Me	Me	Me	Me	a (7–8)	a (14–25)	a (34–52)	a (24–29)
b	-(C	H ₂) ₄ -	Me	Me	b (4)	b (32)	b (40)	b (16)
c		H_),	Me	Me	c (3)	c (7)	c (50)	c (26)
d	Me	Me	Me	Ph	_	_	a (83)	-
e	-(C	H,),-	Me	Ph	-		b (81)	_

Table. 1. Reaction of 3-Amino-2H-azirines 1 with 2-Amino-4,6-dinitrophenol (2) in MeCN at $0^{\circ} \rightarrow Room$ Temperature

Similar results were obtained with the 3-(dimethylamino)-substituted 'spiro-azirines' **1b** and **1c** (*Table. 1*). In contrast, the two aminoazirines **1d** and **1e**, bearing an *N*-methyl-*N*-(phenylamino) group at C(3), react with **2** under analogous conditions to give exclusively the 1,3-benzoxazole derivatives of type **7**.

The structures of the products **5–8** have been elucidated from their spectral data and, in case of **5b**, **6b**, and **8b**, established by X-ray crystallography (*Figs. 1–3; cf. Exper. Part*).

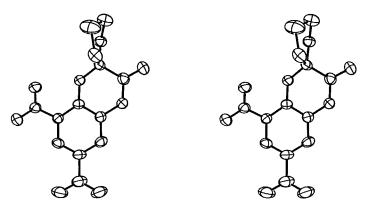
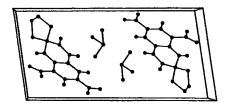



Fig. 1. Stereoview of the crystal structure of 5b

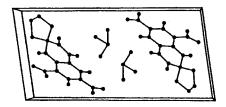


Fig. 2. Packing of 5b

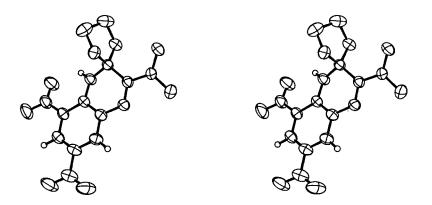


Fig. 3. Stereoview of the crystal structure of 6b

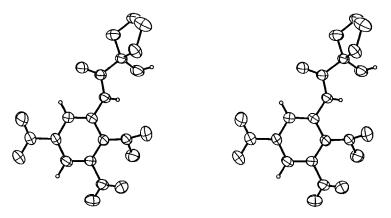
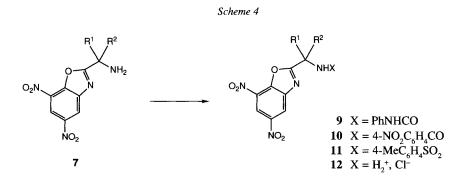



Fig. 4. Stereoview of the crystal structure of 8b

In case of 7, we were not able to grow suitable crystals for an X-ray analysis. Crystallization from different solvents led either to amorphous material (with CH_2Cl_2 , Et_2O , hexane, AcOEt) or to transformations of the product into new compounds (with alcohols).

With the aim to prove the presence of a primary NH_2 group in 7 and with the hope to obtain a derivative suitable for crystal-structure determination, we treated a solution of 7a in CH_2Cl_2 with phenyl isocyanate, with 4-nitrobenzoyl chloride and pyridine, with TsCl and Et₃N, and with HCl (*Scheme 4*).

In all this reactions, the 1,3-benzoxazole skeleton was conserved. Although products 9-12 have been isolated as pure materials and in good yield, single crystals of good quality could be obtained only from hydrochloride 12a. The result of the X-ray structure determination is shown in *Fig. 4*.

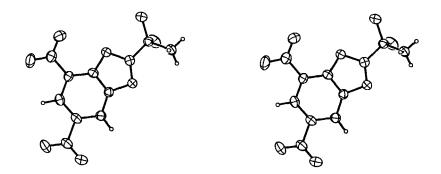


Fig. 5. Stereoview of the crystal structure of 12a

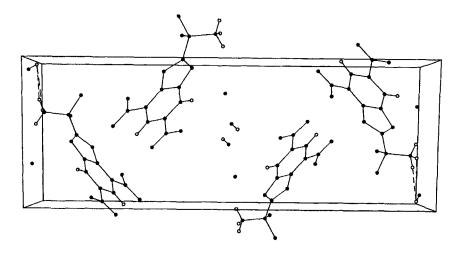
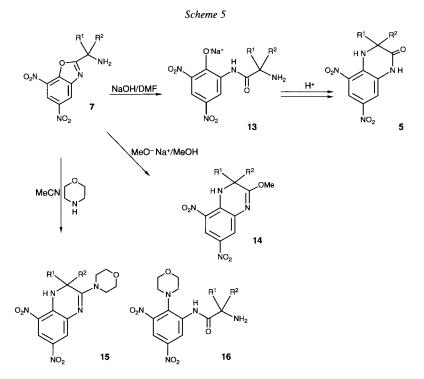
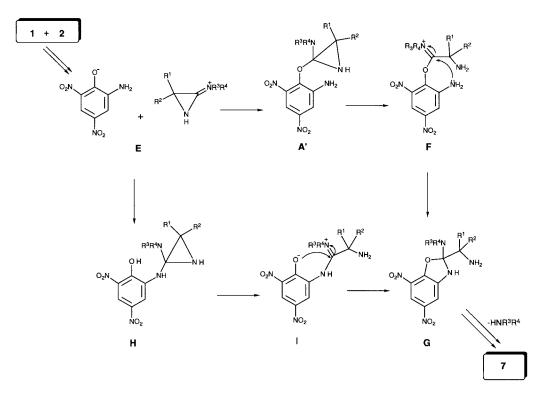



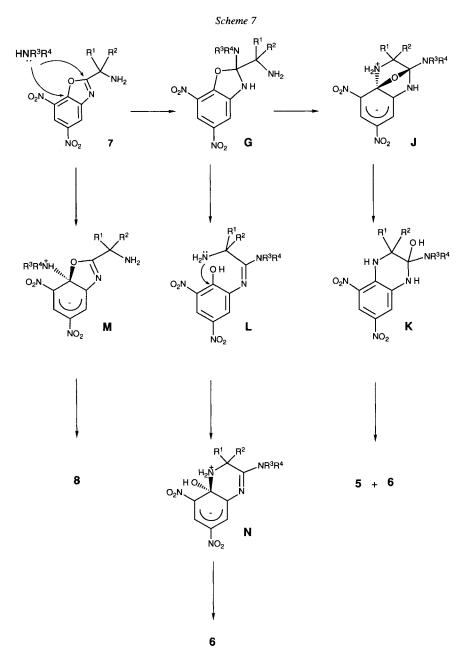
Fig. 6. Packing of 12a

Treatment of 1,3-benzoxazoles of type 7 with nucleophiles led to ring transformations (*Scheme 5*). With NaOMe in MeOH, a ring expansion to the quinazoline derivative 14 occurred. A similar reaction was observed with morpholine, leading to 15, which corresponds to structure 6. In this case, a second product 16 was isolated. The structure of the latter corresponds to that of 8. Again, a ring expansion was observed, when a solution of 7 in THF was treated with aqueous 1N NaOH at room temperature. The sole product of this reaction, formed in high yield, was the quinazolinone 5. In DMF at room temperature, 7 reacted with 1N NaOH to an orange, solide material in quantitative yield. The structure of this product, which could not be isolated in pure form, most likely corresponds to that of phenolate 13. Protonation with dilute aqueous HCl led to a product which, in DMSO solution, underwent a cyclization to give also 5.


3. Discussion. – The most surprising result of the present study is the formation of 7 as the main or sole product. All attempts to detect an intermediate of type C (*Scheme 2*) failed. Therefore, we conclude that there is no such intermediate formed at 0°. Probably the reaction of A' to a spiro-*Meisenheimer* compound of type B (*Scheme 1*) does not take place due to steric hindrance⁵). Instead of the expected intermediate C⁶), the 1,3-benzoxazole 7 is formed.

Reaction mechanisms for the formation of 7 are presented in *Scheme 6*. It is likely that an aziridine A' is produced in the usual way. Cleavage of a C–N bond of the threemembered ring leads to intermediate F. Nucleophilic attack of the aromatic NH_2 group then gives the 2,3-dihydro-1,3-benzoxazole G and elimination of R^3R^4NH yields 7. An alternative reaction mechanism could lead to the formation of H via a nucleophilic attack of the aromatic NH_2 group onto the aziridinium ion of E. In analogy to A' \rightarrow F \rightarrow G, H can undergo a ring opening to I, which again can react via G to give 7.

⁵) This suggestion is supported by the previously reported results of reactions of 1 with 2,6-disubstituted phenols [1], which indeed proceed very slowly.


⁶) The reaction of **1a** and 2,4-dinitrophenol gave the corresponding aniline derivative in 22% yield [1].

The ring expansions observed by treatment of 7 with nucleophiles (*Scheme 5*) can be explained with the reaction sequence depicted in *Scheme 7*: the attack of the nucleophile onto C(2) of the oxazole yields G, which, *via* J and K, leads to 5 and 6. The latter can also be formed *via* opening of the five-membered ring of G and intramolecular nucleophilic aromatic substitution ($\rightarrow L \rightarrow N \rightarrow 6$). The direct substitution of the aromatic oxygen function by an amine and cleavage of the oxazole ring leads *via* M to 8.

The difference of the reactions of the 3-(dimethylamino)- and the 3-(*N*-methyl-*N*-phenylamino)-2*H*-azirines **1a**-c and **1d** and **1e**, respectively, is in accordance with the proposed reaction mechanisms: *N*-methylaniline is a better leaving group than Me₂NH (*cf.* also [5]) and a poorer nucleophile. Whereas **7**, under the conditions of its formation, reacts with the produced nucleophile Me₂NH to give **5**, **6**, and **8**, *N*-methylaniline is not nucleophilic enough to attack the 1,3-oxazole ring (Scheme 7).

Our thanks are due to the analytical services of our institute, especially to Mr. H. Frohofer for elemental analyses, Mrs. E. Patterson-Vykoukal for running IR spectra, Mr. M. Vöhler for NMR spectra, Dr. A. Lorenzi for mass spectra, and to Dr. B.P. Chandrasekhar BASF, India, Bombay, for carring out some preliminary experiments. Financial support by the Swiss National Science Foundation and by F. Hoffmann-La Roche AG, Basel, is gratefully acknowledged.

Experimental Part

General. See [6][7]. IR spectra in KBr. ¹H- (200 MHz) and ¹³C-NMR (50.4 MHz) spectra in CDCl₃. MS at 70 eV, CI-MS with 2-methylpropane; peaks in m/z [%] (>40, >5%).

1. Reaction of 2,2-Dialkyl-3-(dimethylamino)-2H-azirines (1) and 2-Amino-4,6-dinitrophenol (2). General Procedure. To a suspension of 199 mg (1 mmol) of 2 (prepared according to [8]) in 3 ml of dry MeCN, a soln. of 1.15 mmol of 1 in 0.5 ml of MeCN was added at 0° under Ar. The mixture was stirred for 24 h, raising the temp. from 0° to r.t. The solvent was removed under reduced pressure ($T < 30^\circ$), and the resulting residue purified by flash chromatography (AcOEt/CH₂Cl₂ 2:3) [9]. By this means, compounds **7a–c** were isolated in spectroscopically pure form and crystallized to obtain anal. pure products. The remaining material was separated by prep. TLC (hexane/AcOEt 1:1, two plates), except in the case of **6b** and **8b**, which, after TLC separation, were dissoved in 8 ml of CH₂Cl₂ and washed twice with 4 ml of 2N HCl. The org. layer containing **8b** was dried (MgSO₄), and the aq. layer was brought to pH 8 with 5% aq. K₂CO₃ and extracted with AcOEt to give **6b**.

1.1. With 3-(Dimethylamino)-2,2-dimethyl-2H-azirine (1a). 1.1.1. 2-(1-Amino-1-methylethyl)-5,7-dinitro-1,3-benzoxazole (7a). Isolated as a yellow oil, crystallized from CH_2Cl_2 / hexane: orange powder, 34–52% yield. For spectroscopical data see *Exper. 1.4*.

1.1.2. 1,2,3,4-Tetrahydro-3,3-dimethyl-5,7-dinitroquinazolin-2-one (**5**a). Isolated as an amorphous yellow solid, crystallized from EtOH/xylene: yellow prisms, 7–8% yield. M.p. 274–275°. IR: 3320*m*, 3195*w*, 3110*w*, 2960*w*, 2930*m*, 2850*w*, 1695*s*, 1625*s*, 1605*m*, 1545*s*, 1520*s*, 1515*s*, 1470*m*, 1435*m*, 1400*m*, 1395*m*, 1360*s*, 1330*s*, 1240*m*, 1215*m*, 1160*m*, 1095*m*, 1050*w*, 950*m*, 905*w*, 895*m*, 845*w*, 830*w*, 770*w*, 750*w*, 740*w*, 720*m*, 680*m*, 660*m*. ¹H-NMR ((D₀)DMSO): 11.15 (*s*, NH); 8.60 (*s*, NH); 8.48 (*d*, J = 2.5, 1 arom. H); 7.74 (*d*, J = 2.5, 1 arom. H); 1.54 (*s*, (CH₃)₂C). ¹³C-NMR ((D₀)DMSO): 168.1 (*s*, C=O); 135.9, 135.7, 129.6, 128.9 (4*s*, 4 arom. C); 116.5, 111.6 (2*d*, 2 arom. C); 56.5 (*s*, C(3)); 26.8 (*q*, (CH₃)₂C). EI-MS: 266 (26, *M*⁺), 251 (100), 223 (20), 205 (23), 177 (16), 159 (26), 131 (10), 43 (25), 42 (10), 41 (15). Anal. calc. for C₁₀H₁₀N₄O₅ (266.21): C 45.12, H 3.78, N 21.04; found: C 45.01, H 4.01, N 21.08.

1.1.3. 2-(Dimethylamino)-3,4-dihydro-3,3-dimethyl-5,7-dinitroquinazoline (**6a**). Isolated as a red solid, crystallized from acetone/hexane: red prisms, 14–25% yield. M.p. 205.8–206.9°. IR: 3360*m*, 3100*m*, 2965*w*, 2920*w*, 1605*s*, 1590*s*, 1550*s*, 1520*s*, 1500*s*, 1420*s*, 1395*w*, 1385*m*, 1375*m*, 1360*s*, 1330*s*, 1320*s*, 1290*s*, 1230*w*, 1210*w*, 1200*w*, 1165*w*, 1150*m*, 1130*m*, 1080*s*, 1020*w*, 935*m*, 930*m*, 895*w*, 880*w*, 810*m*, 770*w*, 740*m*, 730*w*, 710*w*. ¹H-NMR: 8.72 (*d*, *J* = 2.5, 1 arom. H); 8.20 (br. *s*, NH); 7.97 (*dd*, *J* = 2.5, 0.9, 1 arom. H); 3.15 (*s*, (CH₃)₂N); 1.64 (*s*, (CH₃)₂C). EI-MS: 293 (37, *M*⁺), 278 (100), 249 (19), 247 (6), 246 (8), 232 (14), 186 (20), 172 (6), 157 (6), 130 (6), 93 (6), 70 (7), 63 (6), 57 (10), 56 (8), 44 (23), 43 (15), 42 (22), 41 (12), 40 (7). Anal. calc. for C₁₂H₁₃N₅O₄ (293.28): C 49.14, H 5.15, N 23.88; found: C 48.95, H 5.07, N 23.62.

1.1.4. 2-Amino-N-[2-(dimethylamino)-3,5-dinitrophenyl]-2-methylpropanamide (**8a**). Isolated as a yellow solid, crystallized from i-PrOH: yellow prisms, 24–29% yield. M.p. 205.8–206.9°. IR: 3380w, 3340w, 3240m, 3120w, 3100w, 2980w, 2940w, 2860w, 2810w, 1685s, 1605m, 1595m, 1540s, 1530s, 1455m, 1440w, 1420m, 1350s, 1340s, 1215m, 1180w, 1145m, 1100w, 1080m, 950m, 910m, 885m, 805m, 770w, 755m, 735m. ¹H-NMR: 10.82 (br. s, NH; 9.54 (d, J = 2.7, 1 arom. H); 8.23 (d, J = 2.7, 1 arom. H); 2.85 (s, (CH₃)₂N); 1.66 (br. s, NH₂); 1.50 (s, (CH₃)₂C). ¹³C-NMR: 176.5 (s, C=O); 146.0, 142.9, 140.5, 135.6 (s, 4 arom. C); 116.7, 114.5 (2d, 2 arom. C); 55.7 (s, C(2)); 41.7 (q, (CH₃)₂N); 29.0 (q, (CH₃)₂C). CI-MS: 313 (15, [M + 2]⁺), 312 (100, [M + 1]⁺), 285 (3), 281 (5). Anal. calc. for C₁₂H₁₇N₅O₅ (311.29); C 46.30, H 5.50, N 22.50; found: C 46.54, H 5.71, N 22.39.

1.2. With 2-(Dimethylamino)-1-azaspiro[2.4]hept-1-ene (**1b**). 1.2.1. 2-(1-Aminocyclopentyl)-5,7-dinitro-1,3-benzoxazole (**7b**). Isolated as a colourless oil, crystallized from CH_2Cl_2 / hexane: orange powder, 40% yield. For spectroscopical data, see *Exper. 1.5*.

1.2.2. 1',2',3',4'-Tetrahydro-5',7'-dinitrospiro[cyclopentane-1,3'-quinazolin]-2'-one (**5b**). Isolated as a yellow solid, crystallized from EtOH: yellow prisms, 3-4% yield. M.p. 210-211°. IR: 3320*s*, 3200*w*, 3100*w*, 2960*w*, 1695*s*, 1620*s*, 1545*s*, 1515*s*, 1490*w*, 1355*s*, 1330*s*, 1310*s*, 1285*m*, 1260*w*, 1215*w*, 1190*w*, 1170*w*, 1105*m*, 1090*m*, 1055*w*, 1030*w*, 955*w*, 940*m*, 900*w*, 890*m*, 835*m*, 770*w*, 750*w*, 740*m*, 720*w*. ¹H-NMR ((D_{b})DMSO): 11.10 (br. *s*, NH); 8.53 (br. *s*, NH); 8.48 (*d*, *J* = 2.6, 1 arom. H); 7.75 (*d*, *J* = 2.6, 1 arom. H); 2.3-1.7 (*m*, 4 CH₂). EI-MS: 292 (100, *M*⁺), 275 (35), 263 (43), 250 (18), 245 (18), 235 (84), 217 (16), 171 (25), 85 (42). Anal. calc. for C₁₂H₁₂N₄O₅ (292.24): C 49.32, H 4.14, N 19.17; found: C 49.34, H 4.14, N 19.00.

1.2.3. 2'-(Dimethylamino)-3',4'-dihydro-5',7'-dinitrospiro[cyclopentane-1,3'-quinazoline] (6b). Isolated as a red solid, crystallized from i-PrOH: red prisms, 32% yield. M.p. 165.4-166.4°. IR: 3340m, 3110w, 2930m, 2860w, 1605s, 1590s, 1550s, 1520s, 1500s, 1450w, 1425m, 1385m, 1360s, 1335s, 1320s, 1310s, 1290m,

1270*m*, 1210*w*, 1185*w*, 1165*w*, 1140*m*, 1080*m*, 1010*w*, 940*m*, 910*w*, 905*w*, 880*m*, 860*w*, 770*w*, 740*m*, 730*m*, 710*m*. ¹H-NMR: 8.70 (*d*, *J* = 2.6, 1 arom. H); 8.52 (br. *s*, NH); 7.94 (*dd*, *J* = 2.6, 0.8, 1 arom. H); 3.08 (*s*, (CH₃)₂N); 2.5–1.8 (*m*, 4 CH₂). ¹³C-NMR: 159.2 (*s*, C(2'); 137.1, 136.5, 136.2, 132.2 (*ds*, 4 arom. C); 120.5, 116.2 (2*d*, 2 arom. C); 61.3 (*s*, C(3')); 31.9 (*q*, (CH₃)₂N); 41.0, 24.7 (2*t*, 4 CH₂). EI-MS: 319 (100, *M*⁺), 303 (12), 302 (57), 290 (21), 275 (50), 272 (27), 246 (20), 244 (23), 226 (13), 198 (23), 84 (80). Anal. calc. for $C_{14}H_{12}N_{5}O_{4}$ (319.32): C 52.66, H 5.36, N 21.93; found: C 52.62, H 5.38, N 21.70.

1.2.4. *1-Amino-N-[2-(dimethylamino)-3,5-dinitrophenyl]cyclopentanecarboxamide* (**8b**). Isolated as a yellow solid, crystallized from i-PrOH: yellow prisms, 16% yield. M.p. 142.3–143.1°. IR: 3370*m*, 3320*m*, 3200*m*, 3100*m*, 2980*w*, 2960*m*, 2880*w*, 1680*s* (br.), 1600*m*, 1595*m*, 1540*s*, 1530*s*, 1505*s*, 1484*s*, 1450*s*, 1414*s*, 1413*s*, 1370*s*, 1345*s*, 1210*w*, 1175*w*, 1160*w*, 1140*w*, 1085*w*, 1070*w*, 1055*w*, 945*s*, 910*s*, 895*w*, 830*w*, 895*w*, 780*w*, 755*w*, 735*w*. ¹H-NMR: 10.94 (br. *s*, NH); 9.56 (*d*, J = 2.7, 1 arom. H; 8.22 (*d*, J = 2.7, 1 arom. H); 2.85 (*s*, (CH₃)₂N); 2.4–1.4 (*m*, 10H). ¹³C-NMR: 176.4 (*s*, C=O); 145.9, 142.7, 140.4, 137.5 (4*s*, 4 arom. C); 116.6, 114.3 (2*d*, 2 arom. C); 65.9 (*s*, C(1)); 41.6 (*q*, (CH₄)₂N); 40.7, 24.5 (2*t*, 4 CH₂). CI-MS: 339 (17, [*M* + 2]⁺), 388 (100, [*M* + 1]⁺), 84 (13). Anal. calc. for C₁₄H₁₉N₅O₅ (337.33): C 49.85, H 5.67, N 20.76; found: C 49.73, H 5.49, N 20.51.

1.3. With 2-(Dimethylamino)-1-azaspiro[2.5]oct-1-ene (1c). 1.3.1. 2-(1-Aminocyclohexyl)-5,7-dinitro-1,3-benzoxazole (7c). Isolated as a yellow oil which was crystallized from $CH_2Cl_2/$ hexane: orange powder, 47–54 % yield. M.p. 100° (dec.). IR: 3400w, 3330w, 3100m, 2940s, 2860s, 1635m, 1615s, 1545s, 1535s, 1530s, 1460m, 1445m, 1375m, 1350s, 1275m, 1260m, 1250m, 1190m, 1175w, 1155w, 1070w, 1050w, 1035m, 935w, 920s, 900m, 895m, 850m, 835m, 810w, 790w, 740m, 730m, 720s. ¹H-NMR (CDCl₃): 9.09 (d, J = 2.1, 1 arom. H); 8.87 (d, J = 2.1, 1 arom. H); 2.6–1.3 (m, 5 CH₂). ¹³C-NMR (CDCl₃): 177.6 (s, C=N); 146.9, 145.1, 144.5, 144.2 (4s, 4 arom. C); 121.4, 116.8 (2d, 2 arom. C); 54.0 (s, C(1')); 36.4, 36.4, 25.1 (3t, 5 CH₂). El-MS: 306 (9, M^+), 263 (9), 166 (8), 123 (11), 122 (9), 111 (13), 100 (8), 98 (100), 97 (18), 96 (8), 95 (13), 94 (15), 85 (30), 84 (83), 83 (24), 82 (11), 81 (15), 69 (25), 68 (37), 67 (34), 60 (21).

1.3.2. 1', 2', 3', 4'-Tetrahydro-5',7'-dinitrospiro[cyclohexane-1,3'-quinazolin]-2'-one (**5**c). Isolated as a yellow solid, crystallized from i-PrOH: yellow needles, 3% yield. M.p. 220.3–220.8°. IR: 3360*m*, 3340*m*, 3090*w*, 2990*m*, 2860*m*, 1690*s*, 1525*m*, 1600*w*, 1545*s*, 1515*s*, 1470*w*, 1455*w*, 1435*w*, 1390*w*, 1365*m*, 1335*s*, 1320*s*, 1290*s*, 1250*w*, 1210*w*, 1175*w*, 1140*w*, 1100*m*, 1080*m*, 1030*w*, 1000*w*, 950*w*, 930*w*, 910*w*, 900*w*, 890*m*, 870*w*, 860*w*, 820*w*, 770*w*, 760*w*, 740*m*, 730*w*. ¹H-NMR ((D_{*s*})DMSO): 11.10 (br. *s*, NH); 8.70 (br. *s*, NH); 8.49 (*d*, *J* = 2.6, 1 arom. H); 7.75 (*d*, *J* = 2.6, 1 arom. H); 1.9–1.2 (*m*, 5 CH₂). EI-MS: 306 (100, *M*⁺), 289 (22), 263 (52), 259 (13), 251 (10), 250 (40), 235 (38), 217 (11), 205 (12), 171 (12), 158 (13), 56 (18), 42 (21), 40 (14). Anal. calc. for C₁₃H₄₄N₄O₅ (306.27): C 50.98, H 4.61, N 18.30; found: C 51.03, H 4.75, N 18.05.

1.3.3. 2'-(Dimethylamino)-3',4'-dihydro-5',7'-dinitrospiro[cyclohexane-1,3'-quinazoline] (6c). Isolated as a red solid, crystallized from i-PrOH: red microcrystals, 6–8% yield. M.p. 187–187.7°. IR: 3370s, 3110w, 3000w, 2950m, 2930s, 2860m, 1610s, 1590s, 1550s, 1525s, 1500s, 1470m, 1445w, 1420s, 1370s, 1330s, 1320s, 1290s, 1275s, 1250w, 1205w, 1165m, 1130s, 1080m, 1050w, 1015w, 999m, 945w, 935s, 910w, 890m, 880w, 860w, 840w, 815m, 770w, 740m, 730m, 715m. 'H-NMR (CDCl₃): 9.04 (br. s, NH); 8.74 (d, J = 2.5, 1 arom. H); 7.96 (dd, J = 2.5, 0.8, 1 arom. H; 3.15 (s, (CH₃)₂N); 2.2–1.2 (m, 5 CH₂). EI-MS: 334 (24, [M + 1]⁺), 333 (100, M^+), 316 (55), 286 (17), 56 (18), 47 (30), 45 (34), 43 (30), 42 (38). Anal. calc. for C₁₅H₁₉N₅O₄ (333.34): C 54.05, H 5.74, N 21.01; found: C 53.97, H 5.79, N 20.84.

1.3.4. *1-Amino-N-[2-(dimethylamino)-3,5-dinitrophenyl]cyclohexanecarboxamide* (8c). Isolated as a yellow solid, crystallized from EtOH: yellow prisms, 25–27% yield. M.p. 118.6–119.3°. IR: 3400m, 3260s, 3100m, 2930s, 2860s, 2800m, 1690m (br.), 1595s, 1545s, 1540s, 1530s, 1400s, 1485s, 1450s, 1420s, 1340s, 1215m, 1180m, 1170m, 1155m, 1145m, 1120m, 1100m, 1080s, 1065s, 1000w, 950s, 920m, 910m, 880m, 860m, 835w, 820w, 780w, 760w, 755m, 740s. 'H-NMR (CDCl₃): 10.94 (br. s, NH); 9.55 (d, J = 2.7, 1 arom. H); 8.22 (d, J = 2.7, 1 arom. H); 2.84 (s, (CH₃)₂N); 2.3–1.4 (m, 12 H). ¹³C-NMR (CDCl₃): 176.9 (s, C=O); 145.9, 142.8, 140.5, 137.5 (4s, 4 arom. C); 116.7, 114.3 (2d, 2 arom. C); 58.3 (s, C(1)); 41.6 (q, (CH₃)₂N); 34.3, 25.0, 21.0 (3t, 5 CH₂). CI-MS: 353 (51, [M + 2]⁺), 352 (96, [M + 1]⁺), 322 (5), 321 (5), 307 (14), 99 (11), 98 (100). Anal. calc. for C₁₄H₂₁N₅O₅ (351.36): C 51.27, H 6.02, N 19.93; found: C 51.11, H 5.89, N 19.70.

1.4. With 2,2-Dimethyl-3-(N-methyl-N-phenylamino)-2H-azirine (1d). A soln. of 113 mg (0.65 mmol) of 1d in 1 ml of dry MeCN was added, at 0° under Ar, to a suspension of 99.5 mg (0.5 mmol) of 2 in 1.5 ml of MeCN. The mixture was stirred for 24 h between 0° and r.t., the solvent evaporated ($T < 30^{\circ}$) and the residue purified by flash chromatography (AcOEt/CH₂Cl₂ 2:3). Crystallization from CH₂Cl₂/hexane yielded 110 mg (83%) of 7a as orange powder. M.p. 90° (dec.). IR: 3370w, 3320w, 2980w, 2930w, 1630m, 1615m, 1565w, 1540s, 1530s, 1460m, 1430w, 1385m, 1375m, 1350s, 1340s, 1270w, 1250w, 1220w, 1105m, 1095m, 1065m, 1025m, 990w, 935m, 915m, 900m, 810m, 745m, 720m. 'H-NMR ((CD₄)₂CO): 8.98 (d, J = 2.2, 1 arom. H); 8.94

(d, J = 2.2, 1 arom. H); 2.91 (br. s, NH₂); 1.68 (s, (CH₃)₂C). ¹³C-NMR ((D₆)DMSO): 176.6 (s, C=N); 146.7 (s, C=O); 146.7, 144.2, 143.8, 132.1 (4s, 4 arom. C); 121.5, 116.7 (2d, 2 arom. C); 51.0 (s, C(1')); 39.5 (q, (CH₃)₂C). CI-MS: 267 (100, [M + 1]⁺), 58 (20), 57 (67). EI-MS: 251 (100, [$M - CH_3$]⁺), 210 (16), 164 (8), 159 (6), 118 (5), 58 (20), 42 (9).

1.5. With 2-(N-Methyl-N-phenylamino)-1-azaspiro[2.5]hept-1-ene (1e). In analogy to Exper. 1.4, 130 mg (0.65 mmol) of 1e in 1 ml of MeCN were treated with 2: 118 mg (81%) of 7b as orange powder. M.p. 105° (dec.). IR: 3400w, 3325w, 3105m, 2945m, 2865m, 1630m, 1615m, 1565m, 1545s, 1535s, 1460m, 1385m, 1305s, 1265m, 1250m, 1145m, 1065m, 1035m, 990m, 935m, 915m, 895m, 810s, 740m, 720s. ¹H-NMR ((CD₃)₂CO): 8.97 (d, J = 2.1, 1 arom. H); 8.92 (d, J = 2.1, 1 arom. H); 2.45–1.75 (m, 10 H). ¹³C-NMR ((D₄)MeOH): 178.3 (s, C=N); 148.6, 146.3, 145.7, 145.6 (4s, 4 arom. C); 121.1, 117.7 (2d, 2 arom. C); 62.5 (s, C(1⁺)); 41.0, 25.5 (2t, 4 CH₂). EI-MS: 292 (52, M^+), 276 (16), 275 (100), 264 (19), 263 (84), 217 (21), 210 (18), 84 (24), 42 (15).

2. Reactions of 2-(1-Aminoalkyl)-1,3-benzoxazoles 7 with Electrophiles. 2.1. With Phenyl Isocyanate. 2.1.1. N-[1-(5,7-Dinitro-1,3-benzoxazol-2-yl)cyclopentyl]-N'-phenylurea (**9b**). To a well stirred soln. of 58 mg (0.19 mmol) of **7b** in 2 ml of CH_2Cl_2 at r.t. under Ar, 22 ml (0.20 mmol) of phenyl isocyanat were added. The reaction mixture was stirred overnight, the formed solid collected by filtration, washed with cold MeOH, Et₂O and dried: 75 mg (96%) of **9b**. Colourless solid, m.p. 200.6–202.8°. IR: 3350*m*, 3320*m*, 3100*m*, 2980*m*, 2940*w*, 2880*w*, 1640*s*, 1620*s*, 1600*s*, 1565*s*, 1550*s*, 1535*s*, 1500*s*, 1460*w*, 1445*m*, 1370*w*, 1350*s*, 1320*s*, 1300*w*, 1255*m*, 1250*m*, 1230*m*, 1195*w*, 1180*w*, 1145*w*, 1120*w*, 1100*w*, 1070*w*, 1025*m*, 970*w*, 935*w*, 915*w*, 900*m*, 810*m*, 755*m*, 740*m*, 725*m*, 695*m*. ¹H-NMR ((D₀)DMSO): 9.07 (*d*, *J* = 2.2, 1 arom. H); 8.84 (*d*, *J* = 2.2, 1 arom. H); 8.56 (*s*, PhNH); 7.35–6.85 (*m*, 6 arom. H); 2.5–1.85 (*m*, 4 CH₂). ¹³C-NMR ((D₀)DMSO): 175.1 (*s*, C=N); 154.5 (*s*, C=O); 152.4, 144.5, 143.7, 139.7, 139.6 (5*s*, 5 arom. C); 128.7, 128.5, 121.7, 118.0, 117.7 (5*d*, 7 arom. C); 61.5 (*s*, (C1)); 38.1, 23.4 (2*t*, 4 CH₂). El-MS: 411 (34, *M*⁺), 371 (21), 370 (100), 188 (11), 119 (12), 93 (60), 77 (10).

2.1.2. N-[1-(5,7-Dinitro- $\overline{1}$,3-benzoxazol-2-yl)cyclohexyl]-N'-phenylurea (9c). According to Exper. 2.1.1, 50 mg (0.16 mmol) of 7c were reacted with phenyl isocyanat: 60 mg (88%) of 9c. Colorless solid, m.p. 225.4–226°. IR: 3350m, 3320m, 3100w, 2950w, 2940w, 2930w, 2860w, 1645s, 1615m, 1600s, 1560s, 1550s, 1540s, 1500s, 1465w, 1445m, 1345s, 1320s, 1250s, 1205w, 1190w, 1150w, 1130w, 1115m, 1075w, 1065w, 1035w, 1020w, 980w, 940w, 930w, 900m, 870w, 810m, 755m, 745m, 725m, 695m. ¹H-NMR ((D_e)DMSO): 9.07 (d, J = 2.2, 1 arom. H); 8.85 (d, J = 2.2, 1 arom. H); 8.63 (s, PhNH); 7.3–6.8 (m, 6 arom. H); 2.35–1.65 (m, 5 CH₂). ¹³C-NMR ((D_e)DMSO): 175.5 (s, C=N); 145.0 (s, C=O); 146.4, 144.5, 143.8, 139.7, 132.0 (5s, 5 arom. C); 128.6, 121.4, 117.5, 116.4, 116.4 (5d, 7 arom. C); 54.1 (s, C(1')); 33.9, 24.7, 20.9 (3t, 5 CH₂). EI-MS: 425 (57, M^+), 370 (16), 119 (26), 94 (11), 93 (100), 81 (11), 77 (12), 55 (10).

2.2. With 4-Nitrobenzoyl Chloride: N-[1-(5,7-Dinitro-1,3-benzoxazol-2-yl)cyclopentyl]-4-nitrobenzamide (10). A soln. of 80 mg (0.43 mmol) of 4-nitrobenzoyl chloride in 5 ml of CH₂Cl₂ was added dropwise to a soln. of 120 mg (0.40 mmol) of **7b** in 3.5 ml of pyridine. The soln. was refluxed for 8 h and stirred at r.t. overnight. Then, 15 ml of CH₂Cl₂ were added, the soln. was washed three times with 15 ml of 3N HCl and once with ice/H₂O. The org. layer was dried (MgSO₄), evaporated, and the residue chromatographed (hexane/AcOEt 1:1): 130 mg (74%) **10**. White foam, m.p. 81.1–82.2°. IR: 3400w, 3100w, 2960w, 2870w, 1650m (br.), 1620m, 1605m, 1545s, 1535s, 1525s, 1495w, 1460w, 1350s, 1300m, 1255m, 1190w, 1140w, 1110w, 1070w, 1050w, 1030m, 980w, 940w, 905w, 870w, 850w, 810m, 780w, 725m. 'H-NMR (CDCl₃): 9.06 (d, J = 2.1, 1 arom. H); 8.30 (m, 2 arom. H); 7.96 (m, 2 arom. H); 6.92 (s, NH); 2.75–2.65 (m, CH₂); 2.55–2.35 (m, CH₂); 2.2–2.0 (m, 2 CH₂). ¹³C-NMR (CDCl₃): 174.0 (s, C=N); 166.1 (s, C=O); 149.4, 146.8, 124.9, 144.0, 139.1, 132.1 (6s, 6 arom. C); 128.2, 123.5, 121.3, 116.5 (4d, 6 arom. C); 63.1 (s, C(1')); 38.6, 23.9 (2t, 4 CH₂). EI-MS: 441 (4, M^+), 424 (20), 291 (20), 275 (48), 233 (13), 150 (100), 104 (33), 92 (11), 76 (10).

2.3. With TsCl: N-[1-(5,7-Dinitro-1,3-benzoxazol-2-yl)cyclopentyl]-p-toluenesulfonamide (11). To a soln. of 35 mg (0.12 mmol) of **7b** and 25 mg (0.13 mmol) of TsCl in 3 ml of abs. CH_2Cl_2 at r.t., a slight excess of Et_3N was added and the reaction mixture refluxed for 4 h. Then 7 ml of CH_2Cl_2 were added, the soln. was washed with H_2O , the org. layer dried (MgSO₄), the solvent evaporated, and the residue chromatographed (hexane/AcOEt 9:1): 38 mg (71%) of 11, which was crystallized from toluene. Colourless microcrystals, m.p. 235–235.5°. II: 3350s, 3130m, 3100m, 2990w, 2960w, 2920w, 2880w, 1670m, 1600m, 1575w, 1545s, 1535s, 1495w, 1460m, 1445w, 1430w, 1410m, 1370m, 1345s, 1310m, 1250w, 1190w, 1170s, 1150m, 1120m, 1090m, 1020m, 935m, 930m, 905w, 900w, 870w, 845w, 815s, 810s, 770w, 745w, 730s, 720s, 705w. 'H-NMR ((D_6)DMSO): 9.02 (d, J = 2.2, 1 arom. H); 8.83 (d, J = 2.2, 1 arom. H, NH); 7.36 (d, J = 8.1, 2 arom. H); 2.49–2.35 (m, 4H); 2.05 (s, CH₃); 1.85–1.65 (m, 4 H). CI-MS: 447 (100, [M + 1]⁺). EI-MS: 291 (36, M - OTs), 238 (11), 159 (35), 155 (20), 92 (17), 91 (93), 85 (11), 83 (6), 75 (26), 67 (10), 65 (24), 59

(41), 56 (21), 55 (12), 45 (24), 44 (22), 42 (22), 41 (24), 40 (17), 34 (100). Anal. calc. for $C_{19}H_{18}N_4SO_7$ (446.44): C 51.11, H 4.06, N 12.55, S 7.18; found C 51.33, H 4.24, N 12.43, S 7.19.

2.4. With HCl. 2.4.1. 2-(1-Amino-1-methylethyl)-5,7-dinitro-1,3-benzoxazole Hydrochloride (12a). Dry HCl gas was bubbled through a soln. of 50 mg (0.18 mmol) of 7a in 5 ml of abs. CH_2Cl_2 at r.t. for 5 min. Filtration of the formed solid and crystallization in EtOH yielded 48 mg (88%) of 12a. Colorless needles, m.p. 116° (dec.). IR: 3420m (br.), 2910m (br.), 1650m, 1620m, 1590w, 1555s, 1535s, 1460w, 1440w, 1360m, 1350s, 1265m, 1255m, 1190m, 1150s, 1070m, 1020m, 950m, 935m, 905m, 805m, 735m, 720s. 'H-NMR ((D₆)DMSO): 9.40 (br. s, 3 H); 9.19 (d, J = 2.1, 1 arom. H); 8.95 (d, J = 2.1, 1 arom. H); 1.84 (s, $(CH_3)_2C$). CI-MS: 267 (100, $[M - HCl]^+$), 268 (11), 71 (7).

2.4.2. 2-(1-Aminocyclopentyl)-5,7-dinitro-1,3-benzoxazole Hydrochloride (12b). Dry HCl gas was bubbled through a soln. of 130 mg (0.44 mmol) 7b in 8 ml of abs. CH_2Cl_2 at r.t. for 5 min. The colorless solid was filtered and crystallized from EtOH: 130 mg (90%) of 12b. Colourless microcrystalls, m.p. 127–128° (dec.). IR: 3440m (br.), 2930m (br.), 1640m, 1625m, 1595w, 1550s, 1540s, 1505m, 1465w, 1440w, 1370m, 1350s, 1250m, 1195m, 1150s, 1070m, 1025m, 950m, 940m, 900m, 860w, 800m, 770w, 735m, 725s. 'H-NMR ((D_6) DMSO): 9.45 (br. s, 3 H); 9.19 (d, J = 2.1, 1 arom. H); 8.94 (d, J = 2.1, 1 arom. H); 2.45–1.9 (m, 4 CH₂). ¹³C-NMR ((D_6) DMSO): 170.3 (s, C=N), 146.9, 144.3, 143.5, 132.4 (4s, 4 arom. C); 121.9, 117.3 (2d, 2 arom. C); 61.2 (s, C(1')); 37.1, 24.4 (2t, 4 CH₂). EI-MS: 292 (27, $[M - HCI]^+$), 276 (10), 275 (61), 265 (12), 263 (57), 250 (11), 217 (19), 210 (17), 172 (11), 171 (13), 164 (15), 118 (17), 91 (17), 90 (13), 85 (11), 84 (82), 77 (13), 69 (15), 67 (40), 65 (11), 63 (15), 62 (20), 58 (14), 57 (38), 56 (24), 55 (50), 54 (13), 51 (10), 46 (13), 44 (17), 43 (100), 42 (71), 40 (21).

3. Reactions of 2-(1-Aminoalkyl)-1,3-benzoxazoles 7 with Nucleophiles. 3.1. Treatment of 7b with NaOH. a) To a soln. of 80 mg (0.27 mmol) of 7b in 2 ml DMF, several drops of 1N NaOH were added at r.t., and the mixture was stirred overnight. The solvent was evaporated, the resulting solid washed with MeOH and dried to yield quantitatively sodium 2,4-dinitro-6-[(2-amino-2-methyl)propanoyl]aminophenolate (13) as an orange powder. CI-MS: 333 (5, $[M + 1]^+$), 237 (18), 232 (16), 231 (11), 230 (42), 229 (83), 221 (12), 219 (13), 215 (24), 212 (14), 211 (100), 209 (17), 194 (28), 174 (11), 172 (37), 85 (15), 71 (27), 69 (21). This material was treated with 5% HCl and then extracted with CH₂Cl₂. The combined org. layers were dried (MgSO₄) and the solvent evaporated to give the corresponding phenol in 98% yield, which, in DMSO, rearranges partially to 5b.

b) In analogy to a, a soln. of **7b** in THF was treated with 1N NaOH at r.t. and the solvent evaporated. After addition of H₂O, the soln. was extracted with CH₂Cl₂: 90% of **5b** (see *Exper. 1.2.2*).

3.2. Treatment of 7c with NaOH. According to Exper. 3.1.b, 80 mg (0.26 mmol) of 7c in 2 ml of THF were treated with 1N NaOH at r.t.: 66 mg (89%) of 5c (s. Exper. 1.3.2).

3.3. Treatment of 7 with NaOMe. 3.3.1. 3',4'-Dihydro-2'-methoxy-5',7'-dinitrospiro[cyclopentane-1,3'-quinazoline] (14b). To a well stirred soln. of NaOMe in MeOH, 80 mg (0.27 mmol) of 7b were added at r.t. After 5 min, the reaction was complete (TLC), the solvent was removed, the residue dissolved in H₂O, saturated with NaCl, and extracted twice with CH₂Cl₂. The org. layers were dried (MgSO₄), the solvent evaporated and the residue crystallized from i-PrOH: 81 mg (98%) of 14b. Orange microcrystalls, m.p. 182.7–184°. IR: 3340s, 3100m, 3000w, 2960m, 2930m, 2880m, 2860m, 1615s, 1610s, 1595m, 1540s, 1525s, 1505s, 1450s, 1430m, 1370s, 1350s, 1335s, 1305s, 1290s, 1250m, 1210s, 1080s, 1025m, 970s, 950w, 940m, 905s, 835w, 770w, 750m, 740m, 730m, 720m, 705w. 'H-NMR (CDCl₃): 8.83 (d, J = 2.6, 1 arom. H); 8.55 (br. s, NH); 8.04 (dd, J = 2.6, 0.8, 1 arom. H); 3.94 (s, CH₃O); 2.4–2.3 (m, 2 H); 1.9–1.85 (m, 6 H). EI-MS: 306 (22, M^+), 278 (16), 277 (82), 275 (15), 231 (20), 186 (12), 185 (17), 159 (10), 149 (17), 127 (12), 113 (14), 111 (15), 99 (19), 97 (28), 91 (21), 85 (46), 83 (30), 71 (43), 70 (21), 69 (40), 59 (35), 58 (100), 57 (30), 56 (51), 42 (56). Anal. calc. for C₁, H₄, N₄O₅ (306.27): C 51.15, H 4.62, N 18.35; found: C 51.12, H 4.73, N 18.56.

3.3.2. 3',4'-Dihydro-2'-methoxy-5',7'-dinitrospiro[cyclohexane-1,3'-quinazoline] (14c). According to Exper. 3.3.1, 120 mg (0.39 mmol) of 7c were added to a soln. of NaOMe in MeOH within 5 min at r.t. Crystallization from i-PrOH yielded 121 mg (97%) of 14c. Orange needles, m.p. 167.6–167.9°. IR: 3360m, 3110w, 3080w, 2970w, 2940s, 2860m, 1645s, 1610s, 1590s, 1530s, 1500s, 1475w, 1455m, 1440m, 1425m, 1370s, 1360s, 1340s, 1325s, 1285s, 1260s, 1240s, 1200w, 1180s, 1170s, 1160s, 1140w, 1090m, 1065w, 1020w, 1005w, 975s, 950w, 925s, 910w, 905w, 895w, 866w, 845w, 770w, 750m, 740m, 730m, 720m. 'H-NMR (CDCl₃): 8.99 (s, NH); 8.82 (d, J = 2.6, 1 arom. H); 8.00 (dd, J = 2.6, 0.8, 1 arom. H); 3.94 (s, CH₃O); 2.1–1.3 (m, 5 CH₂). ¹³C-NMR (CDCl₃): 165.5 (s, C=N); 138.8, 136.7, 134.0, 129.6 (4s, 4 arom. C); 123.3, 119.3 (2d, 2 arom. C); 54.6 (s, C(1')); 54.4 (q, CH₃O); 34.0, 24.4, 20.7 (3t, 5 CH₂). EI-MS: 320 (33, M^-), 278 (17), 277 (100), 264 (6), 231 (13), 185 (9), 56 (7), 54 (5), 44 (17), 42 (15), 40 (11). Anal. calc. for C₁₄H₁₆N₄O₅ (320.30): C 52.50, H 5.03, N 17.49; found: C 52.29, H 5.08, N 17.30.

4. Reaction of **7b** and Morpholine. To a soln. of 85 mg (0.25 mmol) of **7b** in 2 ml of abs. MeCN under Ar, 50 μ l of morpholine were added at 0°, and the mixture was stirred at r.t. overnight. Removal of the solvent and flash chromatography (hexane/AcOEt 4:1) yielded 30 mg (35%) **7b** and 57 mg (64% with respect to consumed **7b**) of a *ca*. 1:1.5 mixture ('H-NMR) of *1-Amino*-N-[2-(morpholin-4-yl)-3,5-dinitrophenyl]cyclopentane-carboxamide (**16**) and 3',4'-Dihydro-2'-(morpholin-4-yl)-5',7'-dinitrospiro[cyclopentane-1,3'-quinazoline] (**15**). Isolation of **15** in pure form was achieved by washing a CH₂Cl₂ soln. of the mixture with 2N HCl. The org. layer was dried (MgSO₄), the solvent evaporated, and the residue crystallized from EtOH: 34 mg of **15** in anal. pure form. Orange crystals, m.p. 237.7–238.3°. IR: 3360s, 3100w, 2980w, 2920w, 2850w, 1605s, 1590s, 1550s, 1520m, 1500s, 1490s, 1480m, 1395w, 1365m, 1355s, 1330s, 1290w, 1270w, 1260w, 1250w, 1230w, 1200w, 1270w, 1120s, 1110m, 1080m, 1020w, 1000w, 990m, 900w, 885w, 855w, 805w, 740w, 730w, 715m. 'H-NMR (CDCL₃): 8.76 (*d*, *J* = 2.2, 1 arom. H); 8.47 (br. s, NH); 8.00 (*dd*, *J* = 2.2, 0.5, 1 arom. H); 3.81 (*m*, 2 CH₂O); 3.52 (*m*, 2 CH₂N); 2.2–1.6 (*m*, 4 CH₂). EI-MS: 361 (19, *M*⁺), 344 (9), 113 (10), 99 (15), 97 (21), 85 (50), 84 (10), 83 (25), 71 (68), 70 (14), 69 (26), 57 (100), 56 (17), 55 (28), 43 (59), 41 (21). Anal. calc. for C₁₆H₁₉N₅O₅ (361.35): C 53.18, H 5.30, N 19.38; found: C 53.22, H 5.58, N 19.13.

Spectroscopical Data for **16** (from mixtures with **15**): ¹H-NMR (CDCl₃): 11.00 (br. *s*, NH); 9.63 (*d*, *J* = 2.7, 1 arom. H); 8.16 (*d*, *J* = 2.7, 1 arom. H); 3.95-3.9 (*m*, 4 H); 3.08 (br. *s*, 4 H); 2.5-1.6 (*m*, 10 H). CI-MS: 380 (15, $[M + 1]^+$), 362 (100), 363 (21), 361 (22), 88 (23), 84 (71).

5. X-Ray Structure Determination of **5b**, **6b**, **8b**, and **12a** (see Fig. $1-6)^7$). Data were collected on a Nicolet-R3 diffractometer using the Wyckoff ω -scan mode and graphite monochromated MoK_a radiation at 294 K. Data collection and refinement parameters are listed in Tab. 2. The usual corrections except for absorptions were applied. The structures were determined by direct methods and refined by blocked-cascade refinements with ca. 100 variables per block using SHELXTL [10]. The non-H-atoms were refined with anisotropic temp. factors. Individual isotropic temp. factors were refined for the H-atoms.

For **5b**, most non-H-atoms were located by direct methods. The structure was expanded using *Fourier* techniques. Atoms were identified by a combination of stereochemical and crystallographic information. All H-atoms could be located in a difference *Fourier* map. Only the positions for the NH-atoms were refined, the remaining H-atoms were included using a riding model. There is one molecule of DMSO per molecule of **5b** in the packing. H–N(1) is involved in an asymmetrically bifurcated H-bond with O(5) (intramolecular) and O(5) of an adjacent molecule. H–N(2) binds to the O-atom of the DMSO molecule. The molecular structure and the packing of **5b** are shown in *Fig. 1* and 2.

All non-H-atoms of **6b** were located by direct methods, and all H-atoms in a subsequent difference *Fourier* map. Only the position for the NH-atom was allowed to refine, while all other H-atoms were included in the refinement using a riding model. The NH forms an intramolecular H-bond with one of the NO₂ O-atoms. The molecular structure of **6b** is shown in *Fig. 3*.

For $\mathbf{8b}$, most non-H-atoms were located by direct methods. The structure was expanded using *Fourier* techniques. Atoms were identified on the basis of bond lengths, number of attached H-atoms, and configuration. All H-atoms could be located in a difference map. The positions of the NH-atoms were allowed to refine, while all others were included in the refinement using a riding model. There was no evidence for the presence of H-bonding. The molecular structure of $\mathbf{8b}$ is shown in *Fig. 4*.

All non-H-atoms of **12a** were located by direct methods. There is one molecule of H_2O per molecule of **12a** in the packing. All H-atoms could be located in a difference map except one belonging to the H_2O molecule. Only the positions of the N-H-atom and the one H_2O H-atom were allowed to refine; all other H-atoms were included in the refinement using a riding model. The NH_3^+ group forms three H-bonds: two of the NH-atoms bind to different Cl⁻ ions, while the third forms a H-bond to the H_2O molecule. The latter, in turn, forms H-bonds to two other Cl⁻ ions. The missing H-atom is probably disordered between these two H-bonds. The molecular structure and the packing of **12a** are shown in *Fig. 5* and 6.

⁷) All crystallographic data are deposited with the *Cambridge Crystallographic Data Centre*, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England.

	5b	6b	
Crystallized from	MeCN	acetone/hexane	
Colour	yellow	red	
Crystal temp. (ca.) [K]	294	294	
Space group	P1 triclinic	P1 triclinic	
Z	2	2	
Atoms in the asymmetric unit	$C_{12}H_{12}N_4O_5 \cdot C_2H_6OS$	C ₁₄ H ₁₇ N ₅ O ₄	
Formula Weight	292.25 + 78.13	319.32	
Cell parameters ^a)			
a [Å]	5.897(2)	8.867(4)	
b [Å]	8.384(1)	11.413(5)	
c [Å]	17.105(3)	8.214(4)	
	81.61(1)	105.37(3)	
β [°]	85.87(2)	107.18(4)	
γ [°]	89.07(2)	74.21(5)	
$V[Å^3]$	834.5(3)	749(1)	
Calc. density [Mg/m ³]	1.474	1.416	
2θ (max)	46°	52°	
Reflections measured	3182	3173	
Symmetry-independent reflections	2319	2748	
Reflections used in the refinement $(I > 2.5\sigma(I))$	1853	2158	
Variables	251	2138	
R	0.038	0.059	
	0.042	0.067	
R weighting scheme w	$(\sigma^2(F) + 0.00031F^2)^{-1}$	$(\sigma^2(F) + 0.00038F^2)^{-1}$	
		12a	
Crystallized from	i-PrOH	EtOH	
Colour	yellow	colourless	
Crystal temp. (ca.) [K]	294	294	
Space group	C2/c monoclinic	$P2_1/n$ monoclinic	
Z	8	4	
Atoms in the asymmetric unit	$C_{14}H_{19}N_5O_5$	$C_{10}H_{11}CIN_4O_5 \cdot H_2O$	
Formula Weight	337.33	302.67 + 18.01	
Cell parameters ^a)			
a [Å]	19.059(4)	6.477(5)	
b [Å]	10.967(3)	24.123(9)	
c [Å]	19.010(3)	8.872(5)	
α [°]	90	90	
β [°]	126.11(1)	96.17(4)	
c [°]	90	90	
V[Å ³]	3216(1)	1378(2)	
Calc. density [Mg/m ³]	1.393	1.545	
2θ (max)	46°	46°	
Reflections measured	2476	2196	
	2476 2198	2196 1920	
Reflections measured Symmetry-independent reflections Reflections used in the refinement $(I > 2.5\sigma(I))$			

Table 2. Crystallographic data of 5b, 6b, 8b, and 12a.

Variables

Weighting scheme w

R

R,

^a) The cell dimensions were obtained from 25 accurately centered reflections with $25^{\circ} < 2\theta < 35^{\circ}$ (5b), $20^{\circ} < 2\theta < 28^{\circ}$ (6b), $20^{\circ} < 2\theta < 25^{\circ}$ (8b), and $20^{\circ} < 2\theta < 24^{\circ}$ (12a), respectively.

246

0.043

0.048

 $(\sigma^2(F) + 0.0006F^2)^{-1}$

218

0.034

0.040

 $(\sigma^2(F)+0.00041F^2)^{-1}$

REFERENCES

- [1] B. P. Chandrasekhar, H. Heimgartner, H. Schmid, Helv. Chim. Acta 1977, 60, 2270.
- [2] P. Vittorelli, H. Heimgartner, H. Schmid, P. Hoet, L. Ghosez, Tetrahedron 1974, 30, 3737.
- [3] D. Obrecht, H. Heimgartner, Helv. Chim. Acta 1981, 64, 482; ibid. 1987, 70, 102.
- [4] H. Heimgartner, Isr. J. Chem. 1981, 21, 151.
- [5] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1987, 70, 354.
- [6] K. Dietliker, H. Heimgartner, Helv. Chim. Acta 1983, 66, 262.
- [7] P. Wipf, H. Heimgartner, Helv. Chim. Acta 1986, 69, 1153.
- [8] H. E. Fierz-David, 'Farbenchemie', 3. Aufl., Berlin 1924, S. 87; cf. Beilstein, Handbuch der Organischen Chemie, E 1 13, S. 123; E III 13, S. 899.
- [9] W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.
- [10] G. M. Sheldrick, SHELXTL, an integrated system for solving, refining and displaying crystal structures from diffractometer data, version 5.1, 1986.